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Figure 1. The BBox-Mask-Pose (BMP) method. Steps (a) – (d) repeat until no new detections in step (a) are found. The loop can start
from a bounding box (a.), pose (b.), or segmentation mask (c.). In this example, the background player is first undetected in step (a1).
BMP correctly fits the foreground player’s pose (b1) and corrects his segmentation (c1). After masking the foreground player (d1) the
background player is detected (a2) and his body segemented (final masks).

Abstract

Human pose estimation methods work well on separated
people but struggle with multi-body scenarios. Recent work
has addressed this problem by conditioning pose estima-
tion with detected bounding boxes or bottom-up-estimated
poses. Unfortunately, all of these approaches overlooked
segmentation masks and their connection to estimated key-
points. We condition pose estimation model by segmenta-
tion masks instead of bounding boxes to improve instance
separation. This improves top-down pose estimation in
multi-body scenarios but does not fix detection errors. Con-
sequently, we develop BBox-Mask-Pose (BMP), integrat-
ing detection, segmentation and pose estimation into self-
improving feedback loop. We adapt detector and pose es-
timation model for conditioning by instance masks and use
Segment Anything as pose-to-mask model to close the cir-
cle. With only small models, BMP is superior to top-down
methods on OCHuman dataset and to detector-free meth-
ods on COCO dataset, combining the best from both ap-
proaches and matching state of art performance in both set-
tings. Code is available on the project website 1.

1MiraPurkrabek.github.io/BBox-Mask-Pose/

1. Introduction

Human pose estimation (HPE) plays a crucial role in tasks
like action detection and gesture recognition. It is a chal-
lenging problem, especially in multi-body scenes where
people overlap, leading to issues such as merged bounding
boxes or collapsed poses. Results on multi-body datasets
are far from saturated, with state-of-the-art below 50% [37].

Top-down and detector-free methods are the two primary
approaches in HPE. Top-down approaches, e.g. [12, 33],
estimate a pose for each bounding box provided by a detec-
tor; inaccurate or missing detections are one of their main
failure modes. Detector-free (bottom-up, single-stage, and
hybrid) [28, 37] methods generate poses directly from the
image without relying on bounding boxes. Top-down meth-
ods perform better on datasets like COCO, however, they
struggle in multi-body scenarios where detection errors lead
to degraded performance, giving detector-free methods an
advantage in crowded scenes, e.g. in Fig. 1.

Bounding boxes, masks, and poses represent the human
body in different ways and are often trained on different
datasets. Bounding boxes are easy to annotate and effec-
tive for detecting small people in large scenes, but they lack
detail and may merge instances in crowded scenes. Pose es-
timation models provide anatomical detail but are less effec-
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tive in detecting instances, which is addressed in top-down
methods by an external detector.

BUTCD [37] uses the concept of conditioning. Top-
down methods estimate poses on image crops defined by
bounding boxes, producing one skeleton per crop centered
on the bounding box. Thus, top-down methods are condi-
tioned by bounding boxes. Detector-free methods are con-
ditioned only by an image, while pose-refining methods rely
on prior pose estimates to iteratively refine their output.

The proposed BBox-Mask-Pose (BMP) method extends
conditioning to masks and integrates bounding boxes,
masks, and poses into a feedback loop (Fig. 1). BMP uses
three specialized models that iteratively refine each other’s
output, allowing detection, segmentation, and pose estima-
tion to achieve a consistent results and performance gains,
especially in multi-body scenarios. Specifically, the models
are:
• Enhanced RTMDet [18]: An adapted detector that ignores

masked instances. It runs iteratively, avoiding duplicating
detections and adding missed instances.

• MaskPose: a pose estimation model that is conditioned by
instance segmentation masks rather than bounding boxes.
Its pose estimation is more robust in dense scenes.

• SAM2 (Segment Anything Model) [21], conditioned by
carefully selected pose keypoints, which enhances seg-
mentation capabilities and facilitates information passing
between bounding box locations and pose estimates.
BMP, with no dataset-specific parameter adjustment

or fine-tuning, matches state-of-the-art (SOTA) results of
detector-free approaches on the OCHuman dataset, while
also achieving SOTA performance of top-down methods on
the COCO dataset. Conditioning pose on masks, detection
on prior detections, and segmentation on poses creates a
cycle that improves the accuracy of all components. To
keep BMP efficient, we used moderately-sized transform-
ers (ViT-b [8], RTMDet-l) not specialized on multi-body
scenarios. Larger models (ViT-h, RTMDet-x) would boost
performance even more.

The BMP method combines an object detector with a
model that understands the object structure and could gen-
eralize to tasks where specialized models interpret the struc-
ture, as HPE models do for human anatomy.

In summary, the main contributions are:
1. A detector that ignores masked instances, enabling iter-

ative detection and retrieval of previously missed detec-
tions.

2. MaskPose, a pose estimation model conditioned by seg-
mentation masks instead of bounding boxes, boosting
performance in dense scenes without adding parameters.

3. BBox-Mask-Pose (BMP) method linking bounding
boxes, segmentation masks, and poses to simultaneously
address multi-body detection, segmentation and pose es-
timation.

2. Related work
The most widely used dataset for 2D human pose estima-
tion is COCO [15], with MPII [3] being a less common
alternative. Another dataset used for training is AIC [31].
Datasets like OCHuman [35] and CrowdPose [14] focus on
multibody problems such as occlusion and self-occlusion.
OCHuman is too small for large-scale training and is tradi-
tionally used only for evaluation. CrowdPose is big enough
for training but is unsuitable for evaluation in multi-dataset
setup as it mixes train and test sets of COCO, MPII and
AIC. For COCO and related datasets, the evaluation met-
ric is Object Keypoint Similarity (OKS), while Percentage
of Correct Keypoints (PCKh) is used for MPII. In addition
to pose estimation dataset, CrowdHuman [22] focuses on
person detection in crowds.

There are two main approaches to 2D human pose esti-
mation: top-down and detector-free. Detector-free can fur-
ther be divided into single-stage [23, 24, 28, 32], bottom-up
[6, 9, 20] and hybrid [37].

Top-down methods [12, 16, 25, 33, 34] use person detec-
tor to detect bounding boxes and estimate one skeleton for
each bounding box. They leverage big progress in human
detection and specialize on understanding of human struc-
ture. Top-down methods are the most successful in datasets
like COCO, MPII or AIC but struggle on crowded datasets
like OCHuman due to low-quality detections. Most notably,
ViTPose [33] combines multiple datasets into one strong
backbone and set a strong baseline, setting up state of the
art performance on most datasets.

On the other hand, detector-free models do not achieve
SOTA performance on COCO but are superior to top-
down methods on OCHuman as they are specialized on de-
coupling close-interaction instances. The most successful
model, BUCTD [37], conditions top-down pose estimation
by previously estimated keypoints (from bottom-up meth-
ods). It is a pose-refinement method which has state-of-the-
art results on OCHuman datasets due to its strong ability to
decouple close-interaction people.

The latest direction in modelling of human body are
foundational models [7, 10, 13, 30]. They try to learn gen-
eral features describing human body that could be used for
all human-related tasks like segmentation, pose estimation
etc. Most notably, Sapiens 2b [13] was trained on stagger-
ing 2M images and with 2B parameters is almost four times
bigger than ViTPose-h. Even with this size, foundational
models perform comparatively or worse than much smaller
specialized models.

Object (or person) detection is one of the most re-
searched problems in computer vision. Huge models like
InternImage [29] or Co-DETR [38] holds SOTA perfor-
mance on multiple datasets. In our comparison, we use
smaller almost real-time models RTMDet [18], ConvNeXt
[17] and HRNet [25] which have slightly lower perfor-
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mance but run much faster. To the best of our knowl-
edge, conditioning object detection by (previously pro-
cessed) segmentation masks was not researched. The only
exception is PoseNMS [19], which is used to verify or reject
bounding boxes.

The idea of segmentation conditioned by human pose is
not new. Many models [1, 2, 27, 35, 36] estimate instance
segmentation from either ground truth pose or estimated
keypoints. Other methods like [5] use pose for test-time
adaptation in instance segmentation. The latest segmenta-
tion foundational model SAM2 [21] is conditioned not only
by human pose but by any point(s). Conditioning mask by
pose is not new but the other direction (conditioning pose
by mask) remains unsolved.

3. Method
The following sections detail the components of the BBox-
Mask-Pose (BMP) method. To create an iterative pro-
cess involving detection, segmentation, and pose estima-
tion, each component must be conditioned by the others.
We adapt the detector and pose estimation model for mask
conditioning and use the Segment Anything Model 2 [21]
to condition masks with bounding boxes and keypoints.

In BMP, the loop starts with the detector; in general, it
could start from any of the three representations.

3.1. Detection
Conditioning the detector with a mask involves detecting
new instances in an image while ignoring already processed
instances. We condition the detector through foreground
masking as shown in Fig. 1. We use instance-removal data
augmentation to make the detector robust against masked
foreground instances. During training, some instances in
the image are masked out, and the model learns not to pre-
dict them.

A major challenge for the detector is handling back-
ground instances split into multiple disconnected parts by
masking. The detector often detects these parts as sepa-
rate instances instead of grouping them. Instance-removal
augmentation simulates this divisive occlusion by randomly
masking out patches in addition to selected instances. This
approach improves detection, but does not fully resolve the
problem. Examples of such failure cases are included in the
supplementary material.

The detector retains its ability to detect instances in un-
masked images. We suspect that instance-removal augmen-
tation may reduce performance in low-light conditions, al-
though this has not been verified. Practically, we can use
the same detector model to initiate the iterative loop and in
subsequent iterations.

Our detector (RTMDet [18]) estimates not only bound-
ing boxes but also segmentation masks. We use these masks
directly to guide pose estimation. If your detector of choice

(a) Missed instance which is detected in the second iteration of BMP.
Left – RTMDet [18]+MaskPose, right – BMP.

(b) Two instances in one detection are resolved by refining segmen-
tation masks with SAM [21] prompted by the detected pose.
Left – RTMDet [18], right – BMP. Note that the detection of the
woman is improved, but the right leg is still wrong.

(c) Collapse of pose estimates into one for two instances with cor-
rectly detected overlapping bboxes. Left – ViTPose-b conditioned by
bounding box, right – MaskPose-b conditioned by masks.

Figure 2. The BBox-Mask-Pose resolves detection errors (top and
middle) and pose errors (bottom). Quantitative results in Tab. 3.
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outputs only bounding boxes or if you want to refine seg-
mentation masks before estimating pose, you could refine
or estimate masks by SAM before pose estimation.

The next chapter introduces MaskPose and explains how
it is conditioned by estimated masks. We experimented with
the same semi-transparent masking for the detector as used
for MaskPose, but this impaired the detector’s ability to dis-
tinguish foreground from background instances. When a
segmentation mask is incorrect, we mask out that part of the
image, resulting in lost information for the detector. De-
spite this instability, BBox-Mask-Pose improves upon the
top-down baseline.

3.2. Pose Estimation
Traditional top-down methods rely solely on bounding
boxes, cropping an image patch centered on the bounding
box. If multiple people appear in the same crop, the model
estimates the pose of the central person but often merges
body parts from others into a single skeleton. We introduce
MaskPose, which builds on ViTPose [33] and adapts it to
use segmentation masks for conditioning.

ViTPose trained in multi-dataset setup generalizes well
across datasets, leveraging the strength of the ViT [8] back-
bone. ViTPose use specialized head for each dataset with
shared backbone. We also train MaskPose on the COCO,
MPII, and AIC datasets, but MaskPose has a single head
for all datasets. This head predicts all 21 keypoints de-
fined across COCO, AIC, and MPII, resulting in negligi-
ble performance loss compared to using separate heads.
MaskPose can thus be evaluated directly on any dataset
without switching heads.

Like the detector, MaskPose is conditioned by mask-
ing parts of the image, but here we mask the background.
MaskPose uses image crops with a darker background to
emphasize the foreground instance. Unlike the detector,
MaskPose uses semi-transparent masking, blending 20% of
the masked-out image with 80% of the original. We exper-
imented with different transparency ratios and observed no
performance difference, as long as both components were
present. Fully masking the background causes loss of con-
textual information, impairing MaskPose’s recovery from
inaccurate masks, while no masking reverts to a traditional
bounding-box-based approach. Semi-transparent masking
provides a balance, making MaskPose robust to mask er-
rors by preserving background context.

To enhance robustness to inaccurate masks, we randomly
deform ground truth and pseudo-ground truth masks during
training, allowing the model to predict keypoints outside the
mask.

MaskPose has approximately the same number of pa-
rameters as ViTPose, differing only in head architecture
and preprocessing. These small changes enable MaskPose
to perform similarly on standard datasets (COCO, AIC,

MPII) while improving performance in multi-body scenar-
ios. Mask conditioning adapts the top-down method for
multi-body cases, allowing instance specification in densely
overlapping scenes. MaskPose is highly robust to incorrect
masks, proving to be the strongest component of the BMP
loop.

3.3. Segmentation
We use Segment Anything Model v2 (SAM) [21] for mask
generation, conditioned by estimated bounding boxes and
poses. SAM is inherently a conditioned segmentor, so no
adaptations are needed. The key challenge is SAM prompt-
ing.

Prompting SAM automatically is complex. It was
trained with a maximum of 8 point prompts and fails
with more, such as all 17 keypoints from COCO pose
(Fig. 3a). The challenge is twofold: determining the num-
ber of keypoints and selecting them. This chapter outlines
our prompting method for a successful BBox-Mask-Pose
loop and analyzes hyper-parameter effects on the loop. For
more on segmentation conditioned by pose with SAM, see
the supplementary material.

Visibility. Detected keypoints present a visibility chal-
lenge. Pose estimation models estimate both visible and oc-
cluded keypoints but typically do not distinguish between
them (with some exceptions, like [26]). SAM can handle
occluded keypoints if they are on the instance border but
struggles if they’re within another instance. We approxi-
mate visibility using confidence, selecting only keypoints
above a certain confidence threshold.

Spread. To segment disconnected parts of an instance
(for example, the legs of the background player in Fig. 1),
we maximize keypoints spread. Selecting keypoints along
the bounding box border provides a good spread, but SAM
still needs at least one unambiguous keypoint to specify the
instance. We mimic human annotation by first choosing
the most confident keypoint (analogous to a human’s initial
click in the center) and then selecting keypoints to maxi-
mize spread. To avoid redundancy, we select at most one
facial keypoint (an eye or the nose).

Bounding box. Another question is whether to use
bounding boxes (Fig. 3b). Experiments with ground truth
boxes show that bounding boxes improve mask quality, but
the situation changes with detected bounding boxes, espe-
cially in multi-body scenarios. The detector may only cap-
ture part of an instance or merge two instances. Prompting
SAM with detected boxes restricts it to the detected area,
limiting its ability to correct detection errors. Conversely,
SAM without a bounding box can “explore” undetected ar-
eas but loses precision within the bounding box. Since de-
tection correction is critical for BMP success, we prompt
SAM without a detected bounding box. Prompting with
bounding box would be useful for final mask refinement af-
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(a) Different number of keypoints for prompting SAM. Prompting with
too many points hinders performance.
Left – 6 keypoint prompts, right – 13 correct prompts.

(b) Prompting with and without bounding box. Prompting with bounding
box prevents SAM from fixing body parts outside of bounding box.
Left – RTMDet, middle – with bbox, right – without bbox.

Figure 3. Influence of prompting parameters on SAM masks.

ter the BMP loop when bounding boxes are stable.
The keypoint selection algorithm is summarized in

Alg. 1. It maximizes keypoint spread similar to KMeans++
initialization [4], factoring in keypoint confidence. We used
6 positive keypoints for each instance (Nmax) and confi-
dence threshold Tc = 0.5.

Our experiments suggest that automatically selected key-
points have a different distribution from human-annotated
prompts. Human annotators intuitively understand the
scene, and SAM generally performs better with human
prompts than with automated keypoint selection. Pose key-
points tend to lie on the borders and extremes of the in-
stance, whereas humans often click in the middle of the in-
stance. By choosing visible, high-confidence, and spread
keypoints, we partially simulate human prompting. Al-
though automated prompts do not match human effective-
ness, the BBox-Mask-Pose loop still improves segmenta-
tion, and pose-prompted SAM outperforms bounding-box-
prompted SAM.

Pose-Mask consistency. When incorrect keypoints are
selected during prompting, SAM’s segmentation mask may
be worse than the original detector mask. After mask gen-

Algorithm 1: Keypoints selection for SAM
Inputs : Set ot detected keypoints K,

Confidence threshold Tc,
Max number of keypoint Nmax

Output: Set of selected keypoints S

1 Select keypoints from K with confidence ≥ Tc

2 Sort keypoints in K by confidence
3 S ← ∅
4 Select the most confident keypoint into S
5 while len(S) < Nmax do
6 k ← keypoint from K furthest to S
7 Add k to S

8 end
9 return S

eration, we measure the pose-mask consistency of both the
original detector mask and the mask refined by SAM. Pose-
mask consistency (P-Mc) is defined as:

P-Mc =

∑
k+p∑
kp

+

∑
k−n∑
kn

(1)

where kp represents the positive keypoints of the instance,
and kn represents negative keypoints (those from other in-
stances in the image). k+p are positive keypoints inside the
mask, while k−p are negative keypoints outside the mask.
Thus, pose-mask consistency measures the proportion of
keypoints (both positive and negative) that are consistent
with the mask. If the refined mask has a lower P-Mc than
the previous mask, we discard it. BBox-Mask-Pose discard
approximately 15% of SAM-refined masks.

Prompting with ground truth data behaves differently
than with noisy estimated data. As mentioned, the ground
truth bounding box consistently improves the predicted
mask. Similarly, ground truth data includes annotated vis-
ibility, allowing us to use only visible keypoints. We
prompted SAM with ground truth bounding boxes and
poses when generating pseudo ground truth for AIC and
MPII to train MaskPose. For further details on prompting
with ground truth, see the supplementary material.

3.4. Closing the circle
With all three models adapted for mutual conditioning, we
establish a closed iterative loop. As shown in Fig. 1, the
detector conditions MaskPose, which in turn conditions
SAM2 segmentation. The loop completes by masking out
processed instances and rerunning the detector.

The loop is not infinite. Each BBox-Mask-Pose itera-
tion masks out more of the image, and when all instances
are masked, the detector no longer identifies new instances,
ending the loop. In practice, the user can set the number
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of iterations manually, as later iterations yield diminishing
performance gains but are computationally expensive.

To minimize duplicate detections, we use two forms of
non-maximum suppression (NMS): bounding box NMS in
the detector and pose NMS in the pose estimator. We ap-
ply both with standard settings. Bounding box NMS with
intersection-over-union (IoU) at 0.3 and pose NMS with
object-keypoint-similarity (OKS) at 0.9. If valid detections
are mistakenly suppressed, they are re-detected in the next
BMP loop iteration.

4. Results
4.1. Implementation details
The BMP loop uses RTMDet-l [18] as the detector. We fine-
tuned RTMDet with instance-removal augmentation for 10
epochs on COCO, covering all 80 classes, to enable it to
ignore already-processed instances. The same detector was
used in top-down model experiments for fair comparison.

MaskPose builds on ViTPose [33], so we use the same
training setup: 210 epochs with three learning rate steps.
We employ a multi-dataset training strategy across COCO,
AIC, and MPII. Since MPII and AIC lack ground truth seg-
mentation, we generate pseudo ground truth using SAM2,
prompted with ground truth bounding boxes and annotated
visible keypoints.

The Segment Anything Model (SAM) is used without
fine-tuning to prevent catastrophic forgetting, as its train-
ing set is unavailable. We use version sam2-hiera-base+
with post-processing settings: max hole area at 10 and
max sprinkle area at 50. Each instance is processed in-
dependently, which yields slightly better results than batch
processing.

4.2. Comparison with SOTA
Pose estimation. Tab. 1 compares pose estimation perfor-
mance on the OCHuman and COCO datasets. All top-down
methods except MIPNet are evaluated with the same detec-
tions from RTMDet-l [18] for a fair comparison. MaskPose
improves the ViTPose [33] baseline from 42.6 to 45.0 AP
through mask conditioning. BMP 1× and MaskPose yield
identical results, as BMP 1× essentially runs MaskPose
with an additional mask refinement step, which does not af-
fect pose. BBox-Mask-Pose 2× further increases MaskPose
performance from 45.0 to 48.2 AP through iterative condi-
tioning between masks and poses. BMP matches the state-
of-the-art performance of BUTCD [37] on OCHuman and
ViTPose [33] in COCO, combining the strengths of the top-
down and hybrid approaches. BMP and MaskPose perform
similarly on COCO, as the detector captures nearly all in-
stances in the first pass, with only a few additional detec-
tions in the second iteration.

Additionally, BUCTD could be integrated into the

Model OCHuman COCO
val AP test AP val AP

DEKR [9] 37.9 36.5 71.0
CID-w48 [28] 46.1 45.0 69.8
BUCTD [37] 48.3 47.4 74.8

Sapiens 0.3b [13] 42.0 41.3 66.1
MIPNet† [12] 42.0 42.5 76.3
ViTPose-b [33] 42.5 42.6 76.3
MaskPose-b 45.3 45.0 76.4

BUCTD 2× [37] 48.8 48.3 —‡
BBox-Mask-Pose 1× 45.3 45.0 76.4
BBox-Mask-Pose 2× 48.6 48.2 76.4

Table 1. Pose estimation – comparison with prior art. Best re-
sults are in bold, second best underlined. The top part of the table
shows detection-free, middle top-down and the bottom iterative
methods. Top-down methods are compared using detections from
RTMDet-l [18] apart from MIPNet† which reports results from
[12]. MaskPose improves ViTPose and BMP further improves
MaskPose, matching SOTA performance.
‡ Result for BUCTD 2× on COCO was not reported in [37].

Model OCHuman test
bbox AP mask AP

ConvNeXt [17] 29.4 20.4
HRNet [25] 27.1 19.4
RTMDet-l [18] 30.0 26.5
BBox-Mask-Pose 1× 30.0 31.1
BBox-Mask-Pose 2× 31.3 32.4

Table 2. Detection and instance segmentation – comparison
with prior art. BMP 1× improves the RTMDet baseline through
SAM prompted by estimated keypoints. BMP 2× further im-
proves detection by detecting background instances in masked-out
images.

BBox-Mask-Pose loop. BUCTD conditions pose estima-
tion on (bottom-up) poses, while BMP conditions pose on
masks. BUCTD could either refine MaskPose’s keypoints
or replace MaskPose within the BMP loop. Furthermore,
BMP provides not only pose estimates but also bounding
boxes and segmentation masks.

Although BMP could run until no new detections occur
in the detect phase, we find that performance plateaus af-
ter two iterations, similar to BUCTD. Further iterations add
computational cost without notable performance gains.

Detection and segmentation. Tab. 2 compares BMP de-
tection and segmentation with previous work on the OCHu-
man dataset. BMP 1× improves the RTMDet pipeline
by refining bounding boxes and segmentation masks us-
ing pose-prompted SAM, as illustrated in Fig. 1. BMP
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bbox AP @ max IoU 0.0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0 0.0 – 1.0

RTMDet-l 22.8 0.3 46.8 52.8 49.0 31.1
BBox-Mask-Pose 2× 22.8 (+0.0) 0.4 (+0.1) 46.0 (-0.8) 52.7 (-0.1) 52.9 (+3.9) 32.1 (+1.0)

Table 3. Ablation study of detection by maximum IoU on OCHuman-val. BBox-Mask-Pose improves detection especially in multi-
body scenarios where bbox overlap is huge. Traditional detectors like RTMDet often merge two individuals into one instance or ignore the
background individual. BMP resolves the issues with instance understanding through pose estimation. See e.g. the detection errors in Fig. 2.

pose SAM pose loops bbox pose params

✓ ✓ ✗ 1× 31.1 45.3 225 M
✓ ✓ ✗ 2× 32.1 48.6 369 M

✓ ✓ ✓ 1× 31.1 46.4 312 M
✗ ✓ ✗ 2× 31.9 47.3 282 M
✓ ✗ ✗ 2× 30.8 47.0 201 M

Table 4. Ablation study of BBox-Mask-Pose components evalu-
ated on OCHuman-val. Bbox and pose evaluated with AP. The
sum of trainable parameters approximates computational com-
plexity. First row corresponds to BMP 1×, second to BMP 2×.

2× further improves detection and segmentation through re-
detection of background instances in images with masked-
out instances, as shown in Fig. 2.

4.3. Ablation study
Detection accuracy in multi-body scenarios. To analyze
BMP’s impact on bounding box quality, we assess detection
performance on the OCHuman validation split by Max IoU.
For each instance, we calculate its highest IoU with other
instances and split the dataset accordingly. Tab. 3 shows that
detection is largely unaffected across all Max IoU values
except for the highest. BMP improves detection accuracy
in high overlap scenarios by capturing missed instances or
splitting merged instances, as illustrated in Fig. 2.

Looping SAM and pose estimation. The third row of
Tab. 4 shows a slight improvement in pose estimation when
re-running pose on SAM-refined masks. This pipeline,
detect-pose-SAM-pose, is comparable to one BMP iteration
as it cannot re-detect previously missed instances. SAM
mask refinement improves MaskPose keypoint predictions,
suggesting that an SAM-pose-SAM loop could further en-
hance the results. However, the additional computational
cost outweighs the gains, so we exclude it to keep BMP ef-
ficient.

Prompting SAM only with bounding box. This ap-
proach effectively omits the pose estimation model from the
loop, as SAM is prompted solely by the bounding box de-
tected in the first step. SAM refines the segmentation mask
and updates the bounding box accordingly. Tab. 4 shows
that SAM alone improves performance over omitting SAM
entirely (second-last and last rows). Adding keypoints as

prompts further boosts detection from 31.9 to 32.1 AP and
pose estimation from 47.3 to 48.6 AP.

Omitting SAM. When SAM is omitted from BMP, seg-
mentation masks are provided only by the detector. This
causes the detector to loop with itself without condition-
ing from masks or poses, often resulting in un-segmented
body parts, like missed limbs. For example, in Fig. 1,
un-segmented legs of a background player could be de-
tected as separate instances, as shown in Fig. 4. In prac-
tice, omitting SAM resembles running a detector with a
low non-maxima suppression (NMS) threshold, resulting in
many false-positive bounding boxes. This hinders detec-
tion performance, but slightly boosts pose accuracy. Low-
confidence poses minimally impact the COCO evaluation,
as they do not deform the precision-recall curve in the AP
computation. That explain why looping the detector with it-
self still improves the pose. However, using SAM improves
detection from 30.8 to 32.1 AP and pose estimation from
47.0 to 48.6 AP, as shown in Tab. 4.

Computational complexity estimation. Comparing the
complexity of iterative approaches with previous work is
challenging. Runtime per frame favors optimized code,
which is prioritized in industry but less so in research.
Here, we approximate computational complexity by sum-
ming trainable parameters that each image passes through.
For example, combining the detector (RTMDet-l) with 57M
parameters and the pose model (ViTPose-b) with 87M pa-
rameters results in 144M trainable parameters. This method
was used to compute the values in Tab. 4, with 57M for
RTMDet-l [18], 87M for MaskPose-b (ViTPose-b [33]),
and 81M for SAM (sam2-hiera-base+ [21]).

While summing parameters provides an estimate, it does
not account for the difference between models that process
entire images and those that work per instance. To adjust for
this, one could multiply by the average instance count per
image, but we omit this detail for simplicity, as we only use
it for ablation and comparisons with other top-down mod-
els.

Omitting SAM from the loop reduces parameters signifi-
cantly, but also sharply decreases performance. Running the
pose estimation again after SAM mask refinement increases
parameter usage by 40%, from 225M to 312M.

For comparison, the Sapiens 0.3b model, a recent foun-
dational model with 336M parameters [13], combined with
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RTMDet-l totals 393M parameters, surpassing the 369M of
two BMP iterations. BMP outperforms Sapiens 0.3b on
both COCO and OCHuman datasets.

5. Conclusions

We presented BBox-Mask-Pose (BMP), a method for de-
tection, segmentation, and pose estimation in multi-body
scenarios. Unlike prior approaches, BMP conditions pose
estimation on predicted instance masks through MaskPose.
BMP integrates MaskPose and uses the Segment Anything
Model (SAM) as a conditioned segmentation model, form-
ing a self-improving loop integrating detection, segmenta-
tion, and pose estimation. By conditioning each model on
outputs from the others, BMP improves detection, segmen-
tation, and pose estimation simultaneously on the OCHu-
man dataset. BMP achieves state-of-the-art (SOTA) perfor-
mance on both the OCHuman and COCO datasets.

Key findings:

1. Conditioning the top-down pose model with masks in-
stead of bounding boxes improves performance, espe-
cially in crowded scenes.

2. The BMP method demonstrates that explicit mutual con-
ditioning between the detector, segmentator, and pose
estimation models enhances performance. However,
adapting these models for mutual conditioning is non-
trivial.

3. BMP’s effectiveness diminishes after two iterations,
with additional iterations offering little performance gain
while increasing computational cost.

4. BMP matches the SOTA performance of detector-free
approaches on OCHuman while also matching the SOTA
performance of top-down models on COCO.

5. Surprisingly, the Segment Anything Model proved the
least effective component in BMP. Although pose-based
prompting improves SAM’s masks, automated prompt-
ing falls short compared to human interaction.

6. The modular structure of BMP enables further perfor-
mance gains by integrating improved models or adding
BUCTD [37] to the loop.

Limitations of BMP primarily involve imperfect SAM
mask refinement. When SAM is prompted with inaccurate
keypoints (e.g., occluded or mislocalized), it has limited re-
covery ability, which can lead to masking out the wrong in-
stances, preventing the detector from retrieving them. We
experimented with semi-transparent masking, as used in
MaskPose, but found it ineffective for this issue.

A second limitation occurs when detecting in masked-
out images. If a foreground instance divides a background
instance into disconnected parts, the detector often fails to
connect these, generating multiple small bounding boxes
for each segment. Although pose NMS suppresses redun-
dant detections, disconnected body parts remain separate.

(a) Segmenting only
skin (green)

(b) Re-detection of un-
segmented clothes.

(c) Missed limb is re-
detected

Figure 4. Characteristic errors in the BMP loop. The weakest part
is SAM and its prompting with correct keypoints.

Attempts to use data augmentation to improve detector ro-
bustness in such cases were unsuccessful. Examples of
these errors are included in Fig. 4.

Future work. MaskPose has demonstrated robustness
to incorrect masks due to training augmentations; extending
this robustness to the detector and pose-to-seg models could
significantly enhance BMP performance.

Beyond robustness, improving the efficiency of interac-
tions between bounding boxes, masks, and poses is an area
for exploration. Foundational models aim to unify body
representations at a feature level but lack the explicit con-
straints offered by different representations. Although foun-
dational models are non-iterative, their large size often re-
sults in longer inference times compared to smaller, spe-
cialized models. Our findings indicate that explicit con-
straints within specialized models could improve perfor-
mance while keeping the models smaller and faster.
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Detection, Pose Estimation and Segmentation for Multiple Bodies:
Closing the Virtuous Circle

Supplementary Material

A. Prompting SAM ablation study

A.1. Setup

Here, we describe the ablation study on prompting SAM.
The study evaluates three metrics: detection improvement
(bounding box; bbox), segmentation improvement (segm),
and pose improvement (pose). For all experiments, we use
bounding boxes and segmentation masks from RTMDet-l
and pose estimates from MaskPose as the baseline pipeline.
The experimental pipeline remains consistent throughout.

Detection and segmentation changes are evaluated on
bounding boxes and segmentation masks refined by SAM,
following the det-pose-SAM pipeline. Pose estimation is
assessed by re-running MaskPose on refined masks, form-
ing a det-pose-SAM-pose pipeline, similar to the setup in
Tab. 4.

All experiments use RTMDet-l [18] as the detector,
MaskPose-b as the pose estimator, and sam2-hiera-base+
as the SAM2 [21] model. Each experiment is assigned a
specific name, listed in the leftmost column of the tables,
for clear referencing. When experiments appear in multi-
ple tables for comparison, their names remain consistent for
easier cross-referencing. Each result is highlighted in green
or red depending on whether it improves or hinders perfor-
mance compared to the RTMDet+MaskPose baseline.

Detection vs. segmentation. Before analyzing the re-
sults of the ablation study, we address a counterintuitive ob-
servation. When refining masks on OCHuman, segmenta-
tion and detection often conflict; improvement in one can
lead to a decrease in the other. This is due to the focus on
people with high overlap in the OCHuman dataset. Many
examples consist of a large area representing the main body
and smaller, disconnected body parts. Examples are shown
in Fig. 5.

When mask refinement focuses heavily on the main seg-
ment, segmentation scores improve, as missing discon-
nected parts has little impact on mask IoU. Conversely,
overly general prompting can cause SAM to merge both in-
stances into one mask, creating a bounding box that may
be more accurate than the original. Large masks merge in-
stances, while small masks often miss disconnected body
parts.

We prioritize detection, even though the goal is to im-
prove all three metrics. The mask refinement step in BBox-
Mask-Pose must ensure that segmented masks adequately
remove limbs during the mask-out step, as shown in Figs. 4c
and 9. However, excessively large masks prevent decou-

(a) (b)

Figure 5. Segmentation error involving a small number of pixels,
like the circled hands, may have a large impact on detection accu-
racy measured by bounding box IoU. A detector returning correct
bounding boxes, which would be nearly identical for both persons
especially in (a), can make segmentation of the two people very
challenging. Improving detection may thus lead to decrease in
segmentation performance. Keypoints used for SAM prompting
are marked (best viewed in zoom).

pling of merged instances, as seen in Fig. 2b. Thus, our
aim is to improve detection without significantly hindering
segmentation performance.

A.2. Results
Bounding box. The question of whether to prompt SAM
with a bounding box is addressed in Tab. 5, with examples
provided in Fig. 3b. When the bounding box is accurate,
or nearly so, it significantly improves segmentation qual-
ity. However, when the bounding box is incorrect, such as
missing parts of an occluded person (Fig. 4c), prompting re-
stricts mask refinement to the given bounding box, reducing
the chance of recovery.

In the final version of BBox-MaskPose, we do not use
bounding box prompting, as we prioritize SAM’s ability to
explore and detect previously missed body parts (Fig. 11).
However, when bounding boxes are reliable, prompting
with them can further refine segmentation and pose esti-
mation, yielding improved results, as shown in Tab. 4 in
Sec. 4.3. Bounding box prompting is also advantageous
when ground truth bounding boxes are available.

Number of positive keypoints (⃝+). Tab. 5 evaluates the
effect of using different numbers of keypoints for prompt-
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name batch bbox ⃝+ ⃝− bbox segm pose

RTMDet [18] + MaskPose 31.1 27.1 45.3

A1 ✗ ✓ 0 0 27.5 31.6 44.2
A2 ✗ ✓ 2 0 28.5 31.6 44.3
A3 ✗ ✓ 4 0 29.3 30.9 44.0
A4 ✗ ✓ 6 0 30.4 29.0 43.6
A5 ✗ ✓ 8 0 31.4 26.9 43.5

B1 ✗ ✗ 1 0 2.5 2.8 12.6
B2 ✗ ✗ 2 0 20.5 20.6 39.8
B3 ✗ ✗ 4 0 31.6 29.1 43.5
B4 ✗ ✗ 6 0 32.2 27.3 42.7
B5 ✗ ✗ 8 0 32.5 26.0 42.1
B6 ✗ ✗ 10 0 32.2 24.2 41.4

Table 5. Ablation study on prompting SAM [21] with varying pos-
itive keypoints (⃝+) on OCHuman-val. Best results for each metric
highlighted in bold; best method for BMP highlighted in blue .
Green text indicates improvement over the baseline, red text indi-
cates a decline. Detection and segmentation often conflict (Fig. 5).
More keypoints improve segmentation (including incorrect masks)
and bounding box detection, but increase segmentation errors.
Pose remains stable but suffers from both wrong segmentation
(guidance errors) and wrong detection (crop errors).

name batch bbox ⃝+ ⃝− bbox segm pose

RTMDet [18] + MaskPose 31.1 27.1 45.3

A3 ✗ ✓ 4 0 29.3 30.9 44.0
C1 ✗ ✓ 4 1 29.5 30.5 44.3
C2 ✗ ✓ 4 3 29.8 28.2 44.2
C3 ✓ ✓ 4 – 29.3 30.9 44.0

B4 ✗ ✗ 6 0 32.2 27.3 42.7
C4 ✗ ✗ 6 1 29.9 23.8 43.6
C5 ✗ ✗ 6 3 27.5 19.2 44.1
C6 ✓ ✗ 6 – 32.2 27.3 42.7

Table 6. Ablation study on prompting SAM [21] with varying
negative keypoints (⃝−) on OCHuman-val. Best results for each
metric in bold; best method for BMP highlighted in blue . Green
text indicates improvement over the baseline, red text indicates
a decline. Adding negative keypoints to bounding boxes hinders
segmentation but slightly improves detection. Without bounding
boxes, negative keypoints degrade both detection and segmenta-
tion. Processing all image instances simultaneously (batch) gives
the same or worse results.

ing.
In the top section, which includes bounding box

prompts, using more keypoints increases the likelihood of
confusing the model, leading to a drop in segmentation
quality. However, more keypoints also increase the chance

of expanding the mask beyond the bounding box, which im-
proves detection. In particular, using 8 keypoints as positive
prompts slightly outperforms the original baseline in detec-
tion.

The second section, without bounding box prompts,
highlights that too few keypoints fail to define the instance
adequately, causing both detection and segmentation to fail
catastrophically. The best segmentation results occur with 4
keypoints, while detection performs best with 8. We chose
6 keypoints as a middle ground, balancing strong detection
performance with slightly improved segmentation.

Number of negative keypoints (⃝−). SAM2 provides
two methods for negative prompting: explicit negative
prompts and batch processing of all instances in the image.
For explicit negative prompts, we identify the closest key-
point from other instances in the same image, provided it
has confidence above a specified threshold.

Tab. 6 evaluates the impact of negative keypoint prompts.
The top section examines adding negative prompts to 4
positive prompts and a bounding box. Negative prompts
slightly improve detection quality, but significantly reduce
segmentation quality. Given the trade-off, the decrease in
segmentation outweighs the minor improvement in detec-
tion, so we avoid using negative keypoints in this setup.

The bottom section evaluates the effect of negative
prompts without a bounding box prompting. Here, adding
negative keypoints decreases both detection and segmenta-
tion performance, making it ineffective for this configura-
tion.

Batch processing. Tab. 6 also evaluates the impact of
batch processing, where SAM is prompted with multiple
instances simultaneously. In this approach, SAM outputs
non-overlapping masks for each prompted instance, ensur-
ing that no mask is a subset of another. Although this be-
havior is logical, batch processing consistently produced the
same or slightly lower results compared to single-instance
processing in all our experiments.

We chose to stick with single-instance processing, as it
likely allows the model to optimize better for one instance
at a time, even if the resulting masks may overlap. Over-
laps could be resolved in a post-processing step using pose
information.

Confidence threshold (Tc). The top part of Tab. 7 ex-
amines the effect of varying the confidence threshold Tc

for selecting keypoints as prompts. Lower thresholds select
keypoints with greater variability but increase the risk of
using incorrectly estimated keypoints. The best results are
achieved with a threshold of Tc = 0.3, which aligns with its
common use in heatmap-based pose estimation models.

Interestingly, a lower threshold (Tc = 0.1) outperforms
a higher threshold (Tc = 0.8), suggesting that variability
is more important than strictly ensuring keypoint correct-
ness. This may indicate that SAM is either robust to incor-
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name batch bbox ⃝+ ⃝− Tc sel. ext. bbox P-Mc bbox by IoU bbox segm pose

RTMDet [18] + MaskPose 31.1 27.1 45.3

Confidence threshold Tc

D1 ✗ ✗ 6 0 0.8 c+d — ✗ ✗ 29.9 27.2 42.1
B4 ✗ ✗ 6 0 0.5 c+d — ✗ ✗ 32.2 27.3 42.7
D2 ✗ ✗ 6 0 0.4 c+d — ✗ ✗ 32.4 27.6 43.1
D3 ✗ ✗ 6 0 0.3 c+d — ✗ ✗ 32.7 27.9 43.3
D4 ✗ ✗ 6 0 0.2 c+d — ✗ ✗ 32.5 28.3 43.6
D5 ✗ ✗ 6 0 0.1 c+d — ✗ ✗ 32.5 28.2 43.6
Selection method
D3 ✗ ✗ 6 0 0.3 c+d — ✗ ✗ 32.7 27.9 43.3
E1 ✗ ✗ 6 0 0.3 c — ✗ ✗ 29.7 26.2 45.0
E2 ✗ ✗ 6 0 0.3 d — ✗ ✗ 34.6 20.6 36.8

Extended bounding box
F1 ✗ ✓ 4 0 0.3 c+d ✗ ✗ ✗ 29.3 31.1 44.1
F2 ✗ ✓ 4 0 0.3 c+d ✓ ✗ ✗ 29.7 31.0 44.1

Pose-Mask consistency
D3 ✗ ✗ 6 0 0.3 c+d — ✗ ✗ 32.7 27.9 43.3
G1 ✗ ✗ 6 0 0.3 c+d — ✓ ✗ 30.9 31.1 45.0
Bounding box by max IoU
D3 ✗ ✗ 6 0 0.3 c+d — ✗ ✗ 32.7 27.9 43.3
F1 ✗ ✓ 4 0 0.3 c+d ✗ ✗ ✗ 29.3 31.1 44.1
H1 ✗ ✗/✓ 6/4 0 0.3 c+d ✗ ✗ ✓ 29.7 30.1 43.9

Final methods
D3 ✗ ✗ 6 0 0.3 c+d — ✗ ✗ 32.7 27.9 43.3
J1 ✗ ✗/✓ 6/4 0 0.5 c+d ✓ ✓ ✓ 29.2 31.1 46.3

Table 7. Ablation study on prompting SAM [21] with varying confidence thresholds (Tc), keypoint selection methods (sel.), and additional
techniques on OCHuman-val. Best results for each metric in bold; best method for BMP highlighted in blue . Green text indicates

improvement over the baseline, red text indicates a decline. Final methods used in BBox-Mask-Pose are highlighted in green . Two
different methods used: one for the BMP loop, another for mask and pose refinement.

rect prompts (which we find unlikely) or that confidence is
not a reliable metric for evaluating keypoint accuracy. As
human pose estimation models are often overconfident, us-
ing self-estimated OKS from [11] could likely yield better
results than relying on confidence.

Selection method (sel.). We compare three methods
for selecting keypoints as prompts. The first method,
confidence-only (c), sorts keypoints by confidence and se-
lects the top N most confident ones. The second, distance-
only (d), selects the N keypoints farthest from the center of
the bounding box. The third method, described in Sec. 3.3,
combines confidence and distance (c+d).

The second part of Tab. 7 shows that combining con-
fidence and distance (c+d) outperforms either approach
alone, providing superior results.

Extending bounding box. Experiment F2 in Tab. 7 ex-
plores the idea of extending the bounding box when using it
for prompting. If selected keypoints fall outside the bound-

ing box, it is extended to include all prompt keypoints. This
ensures that no positive prompt lies outside the bounding
box.

The results show that extending the bounding box
slightly improves the detection accuracy while maintaining
segmentation and pose estimation performance when using
the bounding box. This approach is not applicable when
prompting without a bounding box.

Pose-Mask consistency (P-Mc). Experiment G1 in
Tab. 7 evaluates the effect of Pose-Mask Consistency (P-
Mc), as described in Sec. 3.3. P-Mc significantly improves
segmentation and pose estimation, but reduces detection
performance. As a result, it is highly effective for refining
masks and poses when the bounding box is approximately
correct but not suitable for use in the iterative BBox-Mask-
Pose loop.

Bounding box depending on max IoU. The last exper-
iment (H1) involves prompting with a bounding box only
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Figure 6. Multiple background instances may merge into a single
mask when no bounding box is provided as a prompt. The yellow
mask was refined and covers all spectators. Foreground instances
are omitted in the left image for clarity.
Left – RTMDet [18], right – BMP.

for instances with max IoU > 0.5. The rationale is that
bounding boxes are typically accurate for isolated instances,
where bounding box prompting improves results. However,
for highly overlapping instances, the bounding box is often
inaccurate and degrades detection performance. The results
of this experiment are in Tab. 7.

As expected, the results fall between always prompting
with bounding boxes and never using them. While this
approach significantly improves segmentation compared to
prompting without bounding boxes, the improvement in de-
tection over always prompting with bounding boxes is mi-
nor. A qualitative analysis reveals that this method is pri-
marily beneficial for low-resolution background instances,
such as spectators in sports images. Without bounding
box prompting, SAM often segments the entire background,
leading to inaccuracies. This phenomenon is not well cap-
tured in the evaluation, as background instances rarely have
pose annotations and have limited detection and segmenta-
tion labels. An example is shown in Fig. 6.

A.3. Summary
The ablation study on automated SAM prompting is exten-
sive and may seem overwhelming. To provide a clear sum-
mary, the last rows of Tab. 7 present two prompting methods
used in BBox-Mask-Pose (BMP).

D3: This method is used in the BMP loop to balance re-
fined masks with improved detection. It primarily enhances
detection accuracy while slightly improving segmentation.
Although it does not achieve the best standalone results, it
performs best when used within the closed BMP loop with
re-detections.

J1: This method is designed to refine masks and poses to
produce high-quality estimates. It is used, for instance, in
BMP ablations (Sec. 4.3) to loop SAM and MaskPose with-
out re-detection. It significantly improves segmentation and
pose estimation but is not part of the reported BMP results.
J1 could be applied after the BMP loop terminates to fur-
ther refine masks and bounding boxes, but we avoided this
because it introduces additional overhead by requiring ex-

(a) Two people in
matching coats.

(b) Two boys in one
pair of pants, wearing
matching shirts.

(c) Two players
with matching
jerseys.

Figure 7. Instances not split even after mask refinement by SAM
[21], typically due to similar or identical textures.

tra SAM (and possibly MaskPose) iterations. While such
micro-loops and adjustments could further improve the re-
ported results, our focus is on maintaining clarity, showing
that two simple loops are sufficient to improve detection,
segmentation, and pose estimation.

Pose estimation robustness. Pose estimation demon-
strates notable robustness to the quality of estimated masks.
MaskPose consistently produces accurate poses, even with
low-quality masks (e.g., experiment C5 in Tab. 6), and al-
most always outperforms the ViTPose [33] baseline con-
ditioned by the bounding box. However, achieving the
MaskPose-SAM-MaskPose self-improving loop requires
employing several hand-crafted tweaks. Among these, the
Pose-Mask Consistency, as used in experiment J1 in Tab. 7,
is particularly critical. Overall, BMP’s pose estimation ben-
efits more from refined detections and re-detection of back-
ground instances than from refining masks through SAM.
This highlights the importance of robust detection to im-
prove overall performance within the BMP framework.

B. Failure cases analysis
Here, we provide a detailed analysis of BMP failure cases.
While the most common issues are discussed in the paper,
particularly in Sec. 5 and Fig. 4, this section offers addi-
tional examples and introduces a previously unmentioned
type of error, instance merging.

Merging instances. Even though BMP is designed to
decouple instances merged by the detector, and MaskPose
performs well in such cases, SAM can mistakenly merge in-
stances if it is incorrectly prompted or if the instances have
similar textures. Prominent examples of these failures are
shown in Fig. 7.

BMP struggles to address these issues because bound-
ing box prompting would also fail, given that the detected
bounding box already merges the instances. Furthermore,
Pose-Mask Consistency (P-Mc) does not help in such cases,
as only one instance is detected. Without negative key-
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(a) (b) (c)

Figure 8. Oversegmentation. Green instances have incorrect
masks – only the skin is segmented, excluding the clothes. This
issue commonly occurs with clothing that exposes bare shoulders,
such as dresses or jerseys. Keypoints used for SAM prompting are
marked (best viewed in zoom).

points, a large mask that merges multiple instances (or even
covers the entire image) would still achieve P −Mc = 1.0,
since all positive keypoints fall within the mask and no neg-
ative keypoints are present to penalize the score.

Segmenting clothes instead of the whole person. This
issue, illustrated in Fig. 8, is particularly common in OCHu-
man, where many individuals wear specific clothing. The
problem frequently arises when a person has bare shoul-
ders, such as in an evening dress or basketball jersey. In
such cases, shoulder, facial, knee, elbow, and wrist key-
points, which are on the skin rather than clothing, prompt
SAM to segment only the skin, leaving the clothing un-
segmented. Hip and sometimes ankle keypoints could help
refine segmentation, but these are typically low-confidence
predictions and are often not selected.

Unsegmented clothing causes downstream issues as the
masking-out step leaves the clothes visible. In subsequent
BMPiterations, the detector identifies these as separate in-
stances, as shown in Fig. 4.

We suggest two potential solutions. The first is to im-
prove SAM prompting to include clothing in the segmenta-
tion. The bounding box prompt could address this specific
case, but it hinders performance in other scenarios, as de-
tailed in Fig. 3b and Appendix A. The second is to fine-tune
the detector to ignore clothing when the skin is masked out.
However, this approach risks reducing the detector’s gener-
alizability and causing overfitting to scenarios with visible
skin and faces, which we believe is not a viable long-term
solution.

Missing body parts. When SAM fails to segment a
body part, it remains unmasked and may be redetected in
the next stage, as shown in Figs. 4 and 9. This issue is even
more pronounced when prompting with a bounding box, as
detected bounding boxes often exclude disconnected limbs,
leaving SAM unable to recover them. For this reason, we
avoid prompting with the bounding box in the BMP loop.

Figure 9. Images where SAM [21] successfully decoupled in-
stances but failed to segment a disconnected body part. These
parts remain unmasked and risk being re-detected, as illustrated
in Fig. 4c. Keypoints used for SAM prompting are marked (best
viewed in zoom).

Missed limbs could potentially be addressed by better
alignment between pose and mask. If the refined mask is in-
consistent with the prompted pose, SAM could be restarted
with different prompts to minimize missed limbs. However,
if the limb is also missed by MaskPose, BMP cannot resolve
the issue.

Correct examples. BMP performs reliably in most
cases, as demonstrated by the quantitative results. Figs. 10
and 11 showcase examples of successful detection and seg-
mentation in challenging multi-body scenarios, including
cases where a person is upside down.

In particular, Fig. 11 highlights the ability of BMP to
balance segmentation and detection, as discussed in Fig. 5.
The improvements are significant, with more precise seg-
mentation and accurate instance counts in the scene. Some
small body parts may occasionally be assigned to the wrong
instance, but overall performance remains strong.
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Figure 10. Two iterations of BMP successfully decouple merged
instances, even in challenging images with upside-down people.
Left – RTMDet [18], right – BMP.

Figure 11. Images where BMP improves detection and segmen-
tation using its pose estimates and SAM prompting with selected
keypoint. Bounding box prompting did not lead to comparable re-
sults. Keypoints used for SAM prompting are marked (best viewed
in zoom). Left – RTMDet [18], right – BMP.
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